Skip to main content

Advertisement

Log in

Advanced Characterizations of Solid Electrolyte Interphases in Lithium-Ion Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Solid electrolyte interphases (SEIs) in lithium-ion batteries (LIBs) are ionically conducting but electronically insulating layers on electrode/electrolyte interfaces that form through the decomposition of electrolytes. And although SEIs can protect electrodes from the co-intercalation of solvent molecules and prevent the continued decomposition of electrolytes, their formation can consume active lithium and electrolytes and build up impedance for ion conduction. Therefore, the control of SEI structures and properties to allow for stability and ionic conductivity has become a critical but highly challenging task in battery designs. However, several factors contribute to the difficulty in SEI research. First, the chemical and electrochemical reactions leading to SEI formation are immensely complex and heavily influenced by numerous factors including electrolyte solvents, lithium salts, additives, electrode materials and charge/discharge conditions. Second, the chemical nature of film-formation products such as SEI constituents and their distribution and arrangement in the SEI are complex. Finally, SEIs are in situ formed at the electrode/electrolyte interface in assembled batteries, making the direct observation of SEIs difficult. To address these challenges, the development of advanced characterization techniques is key in the fundamental understanding of SEIs in LIBs. Based on this, this review will provide an overview of the progress in SEI characterization, including methods to investigate electrochemical performance, surface morphology, chemical composition, and structure and mechanical properties, with state-of-the-art characterization techniques developed in recent years being emphasized. And overall, the scientific insights obtained by using these advanced methods will help researchers to better understand electrode/electrolyte interfaces toward the development of high-performance secondary batteries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nishi, Y.: Something About Lithium Ion Batteries. Shokabo Press, Tokyo (1997)

    Google Scholar 

  2. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  PubMed  CAS  Google Scholar 

  3. Vu, A., Qian, Y., Stein, A.: Porous electrode materials for lithium-ion batteries—how to prepare them and what makes them special. Adv. Energy Mater. 2, 1056–1085 (2012). https://doi.org/10.1002/aenm.201200320

    Article  CAS  Google Scholar 

  4. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  Google Scholar 

  5. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    CAS  Google Scholar 

  6. Dey, A.: Film formation on lithium anode in propylene carbonate. J. Electrochem. Soc. 117, C248 (1970)

    Google Scholar 

  7. Peled, E.: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979)

    CAS  Google Scholar 

  8. Besenhard, J., Winter, M., Yang, J., et al.: Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J. Power Sources 54, 228–231 (1995)

    CAS  Google Scholar 

  9. Fong, R., Von Sacken, U., Dahn, J.R.: Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990). https://doi.org/10.1149/1.2086855

    Article  CAS  Google Scholar 

  10. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. (Weinh) 3, 1500213 (2016). https://doi.org/10.1002/advs.201500213

    Article  CAS  Google Scholar 

  11. Choi, N.S., Yew, K.H., Lee, K.Y., et al.: Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 161, 1254–1259 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.049

    Article  CAS  Google Scholar 

  12. He, Y.B., Liu, M., Huang, Z.D., et al.: Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J. Power Sources 239, 269–276 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.141

    Article  CAS  Google Scholar 

  13. Li, N.W., Yin, Y.X., Yang, C.P., et al.: An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016). https://doi.org/10.1002/adma.201504526

    Article  PubMed  CAS  Google Scholar 

  14. Peled, E., Menachem, C., Bar-Tow, D., et al.: Improved graphite anode for lithium-ion batteries chemically bonded solid electrolyte interface and nanochannel formation. J. Electrochem. Soc. 143, L4–L7 (1996). https://doi.org/10.1149/1.1836372

    Article  CAS  Google Scholar 

  15. Sazhin, S.V., Gering, K.L., Harrup, M.K., et al.: Highly quantitative electrochemical characterization of non-aqueous electrolytes and solid electrolyte interphases. J. Electrochem. Soc. 161, A393–A402 (2014). https://doi.org/10.1149/2.043403jes

    Article  CAS  Google Scholar 

  16. Broussely, M., Herreyre, S., Biensan, P., et al.: Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources 97, 13–21 (2001)

    Google Scholar 

  17. An, S.J., Li, J., Du, Z., et al.: Fast formation cycling for lithium ion batteries. J. Power Sources 342, 846–852 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.011

    Article  CAS  Google Scholar 

  18. Wang, F.M., Wang, H.Y., Yu, M.H., et al.: Differential pulse effects of solid electrolyte interface formation for improving performance on high-power lithium ion battery. J. Power Sources 196, 10395–10400 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.045

    Article  CAS  Google Scholar 

  19. Miao, R., Yang, J., Feng, X., et al.: Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.011

    Article  CAS  Google Scholar 

  20. Schmitz, R.W., Murmann, P., Schmitz, R., et al.: Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods. Prog. Solid State Ch. 42, 65–84 (2014). https://doi.org/10.1016/j.progsolidstchem.2014.04.003

    Article  CAS  Google Scholar 

  21. Xu, C., Lindgren, F., Philippe, B., et al.: Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem. Mater. 27, 2591–2599 (2015). https://doi.org/10.1021/acs.chemmater.5b00339

    Article  CAS  Google Scholar 

  22. Xu, M., Zhou, L., Hao, L., et al.: Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries. J. Power Sources 196, 6794–6801 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.050

    Article  CAS  Google Scholar 

  23. Zhang, X.Q., Cheng, X.B., Chen, X., et al.: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989

    Article  CAS  Google Scholar 

  24. Ota, H., Sakata, Y., Inoue, A., et al.: Analysis of vinylene carbonate derived SEI layers on graphite anode. J. Electrochem. Soc. 151, A1659–A1669 (2004)

    CAS  Google Scholar 

  25. Nowak, S., Winter, M.: Chemical analysis for a better understanding of aging and degradation mechanisms of non-aqueous electrolytes for lithium ion batteries: method development, application and lessons learned. J. Electrochem. Soc. 162, A2500–A2508 (2015)

    CAS  Google Scholar 

  26. Xu, G., Liu, Z., Zhang, C., et al.: Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J. Mater. Chem. A 3, 4092–4123 (2015)

    CAS  Google Scholar 

  27. Wang, L., Chen, B., Ma, J., et al.: Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 47, 6505–6602 (2018)

    PubMed  CAS  Google Scholar 

  28. Haregewoin, A.M., Wotango, A.S., Hwang, B.J.: Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ. Sci. 9, 1955–1988 (2016). https://doi.org/10.1039/c6ee00123h

    Article  CAS  Google Scholar 

  29. Heins, T.P., Harms, N., Schramm, L.S., et al.: Development of a new electrochemical impedance spectroscopy approach for monitoring the solid electrolyte interphase formation. Energy Technol. 4, 1509–1513 (2016)

    CAS  Google Scholar 

  30. Yoon, S., Kim, H., Cho, J.J., et al.: Lactam derivatives as solid electrolyte interphase forming additives for a graphite anode of lithium-ion batteries. J. Power Sources 244, 711–715 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.115

    Article  CAS  Google Scholar 

  31. Liu, T., Lin, L., Bi, X., et al.: In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 14, 50–56 (2018). https://doi.org/10.1038/s41565-018-0284-y

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, S.S., Xu, K., Jow, T.R.: EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim. Acta 51, 1636–1640 (2006). https://doi.org/10.1016/j.electacta.2005.02.137

    Article  CAS  Google Scholar 

  33. Aurbach, D., Gamolsky, K., Markovsky, B., et al.: On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47, 1423–1439 (2002)

    CAS  Google Scholar 

  34. Lee, S.H., You, H.G., Han, K.S., et al.: A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode. J. Power Sources 247, 307–313 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.105

    Article  CAS  Google Scholar 

  35. Strelcov, E., Cothren, J., Leonard, D., et al.: In situ SEM study of lithium intercalation in individual V2O5 nanowires. Nanoscale 7, 3022–3027 (2015). https://doi.org/10.1039/c4nr06767c

    Article  PubMed  CAS  Google Scholar 

  36. Bordes, A., Eom, K., Fuller, T.F.: The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si–graphene composite anodes. J. Power Sources 257, 163–169 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.144

    Article  CAS  Google Scholar 

  37. Liao, B., Li, H., Xu, M., et al.: Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 8, 1800802 (2018). https://doi.org/10.1002/aenm.201800802

    Article  CAS  Google Scholar 

  38. Liu, X.H., Wang, J.W., Huang, S., et al.: In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7, 749–756 (2012). https://doi.org/10.1038/nnano.2012.170

    Article  PubMed  CAS  Google Scholar 

  39. Mehdi, B.L., Qian, J., Nasybulin, E., et al.: Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015). https://doi.org/10.1021/acs.nanolett.5b00175

    Article  PubMed  CAS  Google Scholar 

  40. Lucas, I.T., Pollak, E., Kostecki, R.: In situ AFM studies of SEI formation at a Sn electrode. Electrochem. Commun. 11, 2157–2160 (2009). https://doi.org/10.1016/j.elecom.2009.09.019

    Article  CAS  Google Scholar 

  41. Chan, C.K., Ruffo, R., Hong, S.S., et al.: Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189, 1132–1140 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.007

    Article  CAS  Google Scholar 

  42. Malmgren, S., Ciosek, K., Hahlin, M., et al.: Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy. Electrochim. Acta 97, 23–32 (2013). https://doi.org/10.1016/j.electacta.2013.03.010

    Article  CAS  Google Scholar 

  43. Nandasiri, M.I., Camacho-Forero, L.E., Schwarz, A.M., et al.: In situ chemical imaging of solid-electrolyte interphase layer evolution in Li–S batteries. Chem. Mater. 29, 4728–4737 (2017). https://doi.org/10.1021/acs.chemmater.7b00374

    Article  CAS  Google Scholar 

  44. Park, Y., Shin, S.H., Hwang, H., et al.: Investigation of solid electrolyte interface (SEI) film on LiCoO2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS). J. Mol. Struct. 1069, 157–163 (2014). https://doi.org/10.1016/j.molstruc.2014.01.041

    Article  CAS  Google Scholar 

  45. Shi, F., Ross, P.N., Zhao, H., et al.: A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-Fourier transform infrared spectroscopy. J. Am. Chem. Soc. 137, 3181–3184 (2015). https://doi.org/10.1021/ja5128456

    Article  PubMed  CAS  Google Scholar 

  46. Huang, S., Cheong, L.Z., Wang, D., et al.: Thermal stability of solid electrolyte interphase of lithium-ion batteries. Appl. Surf. Sci. 454, 61–67 (2018). https://doi.org/10.1016/j.apsusc.2018.05.136

    Article  CAS  Google Scholar 

  47. Liu, X.R., Deng, X., Liu, R.R., et al.: Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. ACS Appl. Mater. Inter. 6, 20317–20323 (2014). https://doi.org/10.1021/am505847s

    Article  CAS  Google Scholar 

  48. Zhang, J., Wang, R., Yang, X., et al.: Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. Nano Lett. 12, 2153–2157 (2012). https://doi.org/10.1021/nl300570d

    Article  PubMed  CAS  Google Scholar 

  49. Zhang, J., Yang, X., Wang, R., et al.: Influences of additives on the formation of a solid electrolyte interphase on MnO electrode studied by atomic force microscopy and force spectroscopy. J. Phys. Chem. C 118, 20756–20762 (2014). https://doi.org/10.1021/jp503953n

    Article  CAS  Google Scholar 

  50. Ayache, M., Jang, D., Syzdek, J., et al.: Near-field IR nanoscale imaging of the solid electrolyte interphase on a HOPG electrode. J. Electrochem. Soc. 162, A7078–A7082 (2015). https://doi.org/10.1149/2.0101513jes

    Article  CAS  Google Scholar 

  51. Ayache, M., Lux, S.F., Kostecki, R.: IR near-field study of the solid electrolyte interphase on a tin electrode. J. Phys. Chem. Lett. 6, 1126–1129 (2015). https://doi.org/10.1021/acs.jpclett.5b00263

    Article  PubMed  CAS  Google Scholar 

  52. Shi, S., Lu, P., Liu, Z., et al.: Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012). https://doi.org/10.1021/ja305366r

    Article  PubMed  CAS  Google Scholar 

  53. Zhu, Z., Zhou, Y., Yan, P., et al.: In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 15, 6170–6176 (2015). https://doi.org/10.1021/acs.nanolett.5b02479

    Article  PubMed  CAS  Google Scholar 

  54. Yuan, Y., Amine, K., Lu, J., et al.: Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 15806 (2017). https://doi.org/10.1038/ncomms15806

    Article  PubMed Central  CAS  Google Scholar 

  55. Li, Y., Li, Y., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017)

    PubMed  CAS  Google Scholar 

  56. Wang, X., Zhang, M., Alvarado, J., et al.: New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017)

    PubMed  CAS  Google Scholar 

  57. Alvarado, J., Schroeder, M.A., Zhang, M., et al.: A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 21, 341–353 (2018). https://doi.org/10.1016/j.mattod.2018.02.005

    Article  CAS  Google Scholar 

  58. Zachman, M.J., Tu, Z., Choudhury, S., et al.: Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018). https://doi.org/10.1038/s41586-018-0397-3

    Article  PubMed  CAS  Google Scholar 

  59. Li, Y., Huang, W., Li, Y., et al.: Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018). https://doi.org/10.1016/j.joule.2018.08.004

    Article  CAS  Google Scholar 

  60. Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2009)

    Google Scholar 

  61. Delp, S.A., Borodin, O., Olguin, M., et al.: Importance of reduction and oxidation stability of high voltage electrolytes and additives. Electrochim. Acta 209, 498–510 (2016). https://doi.org/10.1016/j.electacta.2016.05.100

    Article  Google Scholar 

  62. Peled, E., Golodnitsky, D., Ardel, G.: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997)

    CAS  Google Scholar 

  63. Ein-Eli, Y.: A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells. Electrochem. Solid-State Lett. 2, 212–214 (1999)

    CAS  Google Scholar 

  64. Zaban, A., Aurbach, D.: Impedance spectroscopy of lithium and nickel electrodes in propylene carbonate solutions of different lithium salts a comparative study. J. Power Sources 54, 289–295 (1995)

    CAS  Google Scholar 

  65. Zheng, J., Zheng, H., Wang, R., et al.: 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 16, 13229–13238 (2014). https://doi.org/10.1039/c4cp01968g

    Article  PubMed  CAS  Google Scholar 

  66. Winter, M.: The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem. 223, 1395–1406 (2009)

    CAS  Google Scholar 

  67. An, S.J., Li, J., Daniel, C., et al.: The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016)

    CAS  Google Scholar 

  68. Kim, S.P., Van Duin, A.C., Shenoy, V.B.: Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: a molecular dynamics study. J. Power Sources 196, 8590–8597 (2011)

    CAS  Google Scholar 

  69. Lu, P., Harris, S.J.: Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13, 1035–1037 (2011). https://doi.org/10.1016/j.elecom.2011.06.026

    Article  CAS  Google Scholar 

  70. Guan, P., Liu, L., Lin, X.: Simulation and experiment on solid electrolyte interphase (SEI) morphology evolution and lithium-ion diffusion. J. Electrochem. Soc. 162, A1798–A1808 (2015)

    CAS  Google Scholar 

  71. Shi, S., Qi, Y., Li, H., et al.: Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries. J. Phys. Chem. C 117, 8579–8593 (2013)

    CAS  Google Scholar 

  72. Gu, Y., Wang, W.W., Li, Y.J., et al.: Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nature Commun. 9, 1339 (2018)

    Google Scholar 

  73. Gauthier, M., Carney, T.J., Grimaud, A., et al.: Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015). https://doi.org/10.1021/acs.jpclett.5b01727

    Article  PubMed  CAS  Google Scholar 

  74. Aurbach, D., Zinigrad, E., Cohen, Y., et al.: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002)

    CAS  Google Scholar 

  75. Aurbach, D.: Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000)

    CAS  Google Scholar 

  76. Aurbach, D., Markovsky, B., Levi, M., et al.: New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J. Power Sources 81, 95–111 (1999)

    Google Scholar 

  77. Collins, J., Gourdin, G., Foster, M., et al.: Carbon surface functionalities and SEI formation during Li intercalation. Carbon 92, 193–244 (2015). https://doi.org/10.1016/j.carbon.2015.04.007

    Article  CAS  Google Scholar 

  78. Nie, M., Lucht, B.L.: Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries. J. Electrochem. Soc. 161, A1001–A1006 (2014)

    CAS  Google Scholar 

  79. Peled, E., Golodnitsky, D., Ulus, A., et al.: Effect of carbon substrate on SEI composition and morphology. Electrochim. Acta 50, 391–395 (2004)

    CAS  Google Scholar 

  80. Ensling, D., Stjerndahl, M., Nytén, A., et al.: A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI-and LiPF 6-based electrolytes. J. Mater. Chem. 19, 82–88 (2009)

    CAS  Google Scholar 

  81. Balbuena, P.B., Wang, Y.: Lithium-Ion Batteries: Solid-Electrolyte Interphase. Imperial College Press, London (2004)

    Google Scholar 

  82. Wang, C., Kakwan, I., Appleby, A.J., et al.: In situ investigation of electrochemical lithium intercalation into graphite powder. J. Electroanal. Chem. 489, 55–67 (2000)

    CAS  Google Scholar 

  83. Philippe, B., Dedryvère, R.M., Gorgoi, M., et al.: Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-ion batteries—a photoelectron spectroscopy study. Chem. Mater. 25, 394–404 (2013)

    CAS  Google Scholar 

  84. Cherkashinin, G., Motzko, M., Schulz, N., et al.: Electron spectroscopy study of Li[Ni Co, Mn]O2/electrolyte interface: electronic structure, interface composition, and device implications. Chem. Mater. 27, 2875–2887 (2015). https://doi.org/10.1021/cm5047534

    Article  CAS  Google Scholar 

  85. Jarry, A., Gottis, S., Yu, Y.S., et al.: The formation mechanism of fluorescent metal complexes at the LixNi0.5Mn1.5O(4−δ)/carbonate ester electrolyte interface. J. Am. Chem. Soc. 137, 3533–3539 (2015). https://doi.org/10.1021/ja5116698

    Article  PubMed  CAS  Google Scholar 

  86. Domi, Y., Ochida, M., Tsubouchi, S., et al.: In situ AFM study of surface film formation on the edge plane of HOPG for lithium-ion batteries. J. Phys. Chem. C 115, 25484–25489 (2011). https://doi.org/10.1021/jp2064672

    Article  CAS  Google Scholar 

  87. Dedryvère, R., Leroy, S., Martinez, H., et al.: XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries. J. Phys. Chem. B 110, 12986–12992 (2006)

    PubMed  Google Scholar 

  88. Nie, M., Chalasani, D., Abraham, D.P., et al.: Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J. Phys. Chem. C 117, 1257–1267 (2013)

    CAS  Google Scholar 

  89. Zhuang, G.V., Yang, H., Ross, P.N., et al.: Lithium methyl carbonate as a reaction product of metallic lithium and dimethyl carbonate. Electrochem. Solid-State Lett. 9, A64–A68 (2006)

    CAS  Google Scholar 

  90. Zhao, L., Watanabe, I., Doi, T., et al.: TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries. J. Power Sources 161, 1275–1280 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.045

    Article  CAS  Google Scholar 

  91. Xu, K., Zhuang, G.V., Allen, J.L., et al.: Syntheses and characterization of lithium alkyl mono-and dicarbonates as components of surface films in Li-ion batteries. J. Phys. Chem. B 110, 7708–7719 (2006)

    PubMed  CAS  Google Scholar 

  92. Ein-Eli, Y., Markovsky, B., Aurbach, D., et al.: The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition. Electrochim. Acta 39, 2559–2569 (1994)

    CAS  Google Scholar 

  93. Aurbach, D., Levi, M.D., Levi, E., et al.: Failure and stabilization mechanisms of graphite electrodes. J. Phys. Chem. B 101, 2195–2206 (1997)

    CAS  Google Scholar 

  94. Zhuang, G.V., Xu, K., Yang, H., et al.: Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC: EMC electrolyte. J. Phys. Chem. B 109, 17567–17573 (2005)

    PubMed  CAS  Google Scholar 

  95. Aurbach, D., Markovsky, B., Shechter, A., et al.: A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate–dimethyl carbonate mixtures. J. Electrochem. Soc. 143, 3809–3820 (1996)

    CAS  Google Scholar 

  96. Besenhard, J., Wagner, M., Winter, M., et al.: Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes. J. Power Sources 44, 413–420 (1993)

    CAS  Google Scholar 

  97. Komaba, S., Kaplan, B., Ohtsuka, T., et al.: Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries. J. Power Sources 119, 378–382 (2003)

    Google Scholar 

  98. Shin, J.S., Han, C.H., Jung, U.H., et al.: Effect of Li2CO3 additive on gas generation in lithium-ion batteries. J. Power Sources 109, 47–52 (2002)

    CAS  Google Scholar 

  99. Möller, K.C., Santner, H., Kern, W., et al.: In situ characterization of the SEI formation on graphite in the presence of a vinylene group containing film-forming electrolyte additives. J. Power Sources 119, 561–566 (2003)

    Google Scholar 

  100. Leggesse, E.G., Jiang, J.C.: Theoretical study of the reductive decomposition of 1, 3-propane sultone: SEI forming additive in lithium-ion batteries. RSC Adv. 2, 5439–5446 (2012)

    CAS  Google Scholar 

  101. Aurbach, D., Ein-Eli, Y., Markovsky, B., et al.: The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries II. Graphite electrodes. J. Electrochem. Soc. 142, 2882–2890 (1995)

    CAS  Google Scholar 

  102. Zhang, S.S.: A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162, 1379–1394 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074

    Article  CAS  Google Scholar 

  103. Dahbi, M., Violleau, D., Ghamouss, F., et al.: Interfacial properties of LiTFSI and LiPF6-based electrolytes in binary and ternary mixtures of alkylcarbonates on graphite electrodes and celgard separator. Ind. Eng. Chem. Res. 51, 5240–5245 (2012). https://doi.org/10.1021/ie203066x

    Article  CAS  Google Scholar 

  104. Han, H.B., Zhou, S.S., Zhang, D.J., et al.: Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. J. Power Sources 196, 3623–3632 (2011)

    CAS  Google Scholar 

  105. Plakhotnyk, A.V., Ernst, L., Schmutzler, R.: Hydrolysis in the system LiPF6–propylene carbonate–dimethyl carbonate–H2O. J. Fluorine Chem. 126, 27–31 (2005)

    CAS  Google Scholar 

  106. Kawamura, T., Kimura, A., Egashira, M., et al.: Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J. Power Sources 104, 260–264 (2002)

    CAS  Google Scholar 

  107. Fu, L.J., Liu, H., Li, C., et al.: Surface modifications of electrode materials for lithium ion batteries. Solid State Sci. 8, 113–128 (2006). https://doi.org/10.1016/j.solidstatesciences.2005.10.019

    Article  CAS  Google Scholar 

  108. Petibon, R., Sinha, N., Burns, J., et al.: Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells. J. Power Sources 251, 187–194 (2014)

    CAS  Google Scholar 

  109. Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411

    Article  PubMed  CAS  Google Scholar 

  110. Wu, H., Cui, Y.: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012). https://doi.org/10.1016/j.nantod.2012.08.004

    Article  CAS  Google Scholar 

  111. Winter, M., Novák, P., Monnier, A.: Graphites for lithium-ion cells: the correlation of the first-cycle charge loss with the Brunauer–Emmett–Teller surface area. J. Electrochem. Soc. 145, 428–436 (1998)

    CAS  Google Scholar 

  112. Zheng, T., Gozdz, A.S., Amatucci, G.G.: Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures. J. Electrochem. Soc. 146, 4014–4018 (1999)

    CAS  Google Scholar 

  113. Ng, S.H., Vix-Guterl, C., Bernardo, P., et al.: Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries. Carbon 47, 705–712 (2009). https://doi.org/10.1016/j.carbon.2008.11.008

    Article  CAS  Google Scholar 

  114. Novák, P., Ufheil, J., Buqa, H., et al.: The importance of the active surface area of graphite materials in the first lithium intercalation. J. Power Sources 174, 1082–1085 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.036

    Article  CAS  Google Scholar 

  115. Spahr, M.E., Buqa, H., Würsig, A., et al.: Surface reactivity of graphite materials and their surface passivation during the first electrochemical lithium insertion. J. Power Sources 153, 300–311 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.032

    Article  CAS  Google Scholar 

  116. Eshkenazi, V., Peled, E., Burstein, L., et al.: XPS analysis of the SEI formed on carbonaceous materials. Solid State Ionics 170, 83–91 (2004). https://doi.org/10.1016/s0167-2738(03)00107-3

    Article  CAS  Google Scholar 

  117. Tsubouchi, S., Domi, Y., Doi, T., et al.: Spectroscopic characterization of surface films formed on edge plane graphite in ethylene carbonate-based electrolytes containing film-forming additives. J. Electrochem. Soc. 159, A1786–A1790 (2012)

    CAS  Google Scholar 

  118. Peled, E., Golodnitsky, D., Menachem, C., et al.: An advanced tool for the selection of electrolyte components for rechargeable lithium batteries. J. Electrochem. Soc. 145, 3482–3486 (1998)

    CAS  Google Scholar 

  119. Li, J., Murphy, E., Winnick, J., et al.: The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries. J. Power Sources 102, 302–309 (2001)

    CAS  Google Scholar 

  120. Ogihara, N., Igarashi, Y., Kamakura, A., et al.: Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries. Electrochim. Acta 52, 1713–1720 (2006). https://doi.org/10.1016/j.electacta.2006.01.082

    Article  CAS  Google Scholar 

  121. Zhang, S.S.: The effect of the charging protocol on the cycle life of a Li-ion battery. J. Power Sources 161, 1385–1391 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.040

    Article  CAS  Google Scholar 

  122. Wang, Y., Zaghib, K., Guerfi, A., et al.: Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochim. Acta 52, 6346–6352 (2007)

    CAS  Google Scholar 

  123. Lu, W., Lee, C., Venkatachalapathy, R., et al.: Electrochemical and thermal behaviour of LiNi0.8Co0.2O2 cathode in sealed 18650 Li-ion cells. J. Appl. Electrochem. 30, 1119–1124 (2000)

    CAS  Google Scholar 

  124. Aurbach, D., Daroux, M., Faguy, P., et al.: Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 134, 1611–1620 (1987)

    CAS  Google Scholar 

  125. Aurbach, D., Gofer, Y., Ben-Zion, M., et al.: The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency. J. Electroanal. Chem. 339, 451–471 (1992)

    CAS  Google Scholar 

  126. Zhang, L., Zhang, K., Shi, Z., et al.: LiF as an artificial SEI layer to enhance the high-temperature cycle performance of Li4Ti5O12. Langmuir 33, 11164–11169 (2017). https://doi.org/10.1021/acs.langmuir.7b02031

    Article  PubMed  CAS  Google Scholar 

  127. Steinhauer, M., Risse, S., Wagner, N., et al.: Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy. Electrochim. Acta 228, 652–658 (2017). https://doi.org/10.1016/j.electacta.2017.01.128

    Article  CAS  Google Scholar 

  128. Zhang, J.N., Li, Q., Wang, Y., et al.: Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 14, 1–7 (2018). https://doi.org/10.1016/j.ensm.2018.02.016

    Article  Google Scholar 

  129. Sun, D., Wang, Q., Zhou, J. et al. : Forming a Stable CEI Layer on LiNi0. 5Mn1. 5O4 Cathode by the Synergy Effect of FEC and HDI. J. Electrochem. Soc. 165, A2032–A2036 (2018)

    CAS  Google Scholar 

  130. Zhao, W., Zheng, J., Zou, L., et al.: High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases. Adv. Energy Mater. 8, 1800297 (2018)

    Google Scholar 

  131. He, Y.B., Li, B., Yang, Q.H. et al. : Effects of current densities on the formation of LiCoO2/graphite lithium ion battery. J. Solid State Electr. 15, 1977–1985 (2010)

    Google Scholar 

  132. Zheng, M.S., Dong, Q.F., Cai, H.Q., et al.: Formation and influence factors of solid electrolyte interphase film on the negative electrode surface in lithium-ion batteries. J. Electrochem. Soc. 152, A2207–A2210 (2005)

    Google Scholar 

  133. Zhang, X., Kostecki, R., Richardson, T.J., et al.: Electrochemical and infrared studies of the reduction of organic carbonates. J. Electrochem. Soc. 148, A1341–A1345 (2001)

    CAS  Google Scholar 

  134. Schroder, K.W., Celio, H., Webb, L.J. et al.: Examining solid electrolyte interphase formation on crystalline silicon electrodes: influence of electrochemical preparation and ambient exposure conditions. J. Phys. Chem. C 116, 19737–19747 (2012)

    CAS  Google Scholar 

  135. Lindgren, F., Xu, C., Niedzicki, L., et al.: SEI formation and interfacial stability of a Si electrode in a LiTDI-salt based electrolyte with FEC and VC additives for Li-ion batteries. ACS Appl. Mater. Inter. 8, 15758–15766 (2016). https://doi.org/10.1021/acsami.6b02650

    Article  CAS  Google Scholar 

  136. Tsuda, T., Kanetsuku, T., Sano, T., et al.: In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery. Microscopy 64, 159–168 (2015). https://doi.org/10.1093/jmicro/dfv003

    Article  PubMed  CAS  Google Scholar 

  137. Waldmann, T., Wilka, M., Kasper, M., et al.: Temperature dependent ageing mechanisms in Lithium-ion batteries—a post-mortem study. J. Power Sources 262, 129–135 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.112

    Article  CAS  Google Scholar 

  138. Zhuang, Q., Tian, L., Wei, G., et al.: Two-and three-electrode impedance spectroscopic studies of graphite electrode in the first lithiation. Sci. Bull. 54, 2627–2632 (2009). https://doi.org/10.1007/s11434-009-0356-3

    Article  CAS  Google Scholar 

  139. Chen, L., Wang, K., Xie, X., et al.: Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Sources 174, 538–543 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.149

    Article  CAS  Google Scholar 

  140. Kominato, A., Yasukawa, E., Sato, N., et al.: Analysis of surface films on lithium in various organic electrolytes. J. Power Sources 68, 471–475 (1997)

    CAS  Google Scholar 

  141. Huang, Z., Ren, J., Zhang, W., et al.: Protecting the Li–metal anode in a Li–O2 battery by using boric acid as an SEI-forming additive. Adv. Mater. 30, 1803270 (2018)

    Google Scholar 

  142. Goktas, M., Bolli, C., Berg, E.J., et al.: Graphite as cointercalation electrode for sodium-ion batteries: electrode dynamics and the missing solid electrolyte interphase (SEI). Adv. Energy Mater. 8, 1702724 (2018)

    Google Scholar 

  143. Zhang, H.L., Liu, C., Tan, J., et al.: New insight into the solid electrolyte interphase with use of a focused ion beam. J. Phys. Chem. B 109, 22205–22211 (2005)

    PubMed  CAS  Google Scholar 

  144. Joshi, T., Eom, K., Yushin, G., et al.: Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries. J. Electrochem. Soc. 161, A1915–A1921 (2014)

    Google Scholar 

  145. Etiemble, A., Tranchot, A., Douillard, T., et al.: Evolution of the 3D microstructure of a Si-Based electrode for Li-Ion batteries investigated by FIB/SEM tomography. J. Electrochem. Soc. 163, A1550–A1559 (2016)

    CAS  Google Scholar 

  146. Xiao, X., Liu, Z., Baggetto, L., et al.: Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries. Phys. Chem. Chem. Phys. 16, 10398–10402 (2014)

    PubMed  CAS  Google Scholar 

  147. Wang, C.M., Xu, W., Liu, J., et al.: In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res. 25, 1541–1547 (2010)

    CAS  Google Scholar 

  148. Sui, T., Song, B., Dluhos, J., et al.: Nanoscale chemical mapping of Li-ion battery cathode material by FIB-SEM and TOF-SIMS multi-modal microscopy. Nano Energy 17, 254–260 (2015). https://doi.org/10.1016/j.nanoen.2015.08.013

    Article  CAS  Google Scholar 

  149. Sun, Y., Zheng, G., Seh, Z.W., et al.: Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 1, 287–297 (2016)

    CAS  Google Scholar 

  150. Unocic, R.R., Sun, X.G., Sacci, R.L., et al.: Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal. 20, 1029–1037 (2014). https://doi.org/10.1017/S1431927614012744

    Article  PubMed  CAS  Google Scholar 

  151. Zeng, Z., Zhang, X., Bustillo, K., et al.: In Situ Study of Lithiation and Delithiation of MoS2 Nanosheets Using Electrochemical Liquid Cell Transmission Electron Microscopy. Nano Lett. 15, 5214–5220 (2015). https://doi.org/10.1021/acs.nanolett.5b02483

    Article  PubMed  CAS  Google Scholar 

  152. Cheong, J.Y., Chang, J.H., Seo, H.K., et al.: Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy. Nano Energy 25, 154–160 (2016)

    CAS  Google Scholar 

  153. Gu, M., Parent, L.R., Mehdi, B.L., et al.: Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 13, 6106–6112 (2013). https://doi.org/10.1021/nl403402q

    Article  PubMed  CAS  Google Scholar 

  154. Li, Z., Tan, X., Li, P., et al.: Coupling in situ TEM and ex situ analysis to understand heterogeneous sodiation of antimony. Nano Lett. 15, 6339–6348 (2015)

    PubMed  CAS  Google Scholar 

  155. Nie, M., Abraham, D.P., Chen, Y., et al.: Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J. Phys. Chem. C 117, 13403–13412 (2013). https://doi.org/10.1021/jp404155y

    Article  CAS  Google Scholar 

  156. Chattopadhyay, S., Lipson, A.L., Karmel, H.J., et al.: In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode. Chem. Mater. 24, 3038–3043 (2012). https://doi.org/10.1021/cm301584r

    Article  CAS  Google Scholar 

  157. Sacci, R.L., Dudney, N.J., More, K.L., et al.: Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50, 2104–2107 (2014). https://doi.org/10.1039/c3cc49029g

    Article  CAS  Google Scholar 

  158. Yang, T., Zhang, N., Lang, Y., et al.: Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Electrochim. Acta 56, 4058–4064 (2011). https://doi.org/10.1016/j.electacta.2010.12.109

    Article  CAS  Google Scholar 

  159. Zeng, Z., Liang, W.I., Liao, H.G., et al.: Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745–1750 (2014). https://doi.org/10.1021/nl403922u

    Article  PubMed  CAS  Google Scholar 

  160. Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., et al.: Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9, 4379–4389 (2015)

    PubMed  CAS  Google Scholar 

  161. Dolle, M., Grugeon, S., Beaudoin, B., et al.: In situ TEM study of the interface carbon/electrolyte. J. Power Sources 97, 104–106 (2001)

    Google Scholar 

  162. Yuk, J.M., Seo, H.K., Choi, J.W., et al.: Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. ACS Nano 8, 7478–7485 (2014)

    PubMed  CAS  Google Scholar 

  163. Jungjohann, K., Harrison, K., Goriparti, S., et al.: In-situ S/TEM of Li-ion batteries: lithium metal and sn anode interfacial processes. Microsc. Microanal. 24, 1484–1485 (2018). https://doi.org/10.1017/s1431927618007900

    Article  Google Scholar 

  164. Sacci, R.L., Black, J.M., Balke, N., et al.: Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett. 15, 2011–2018 (2015). https://doi.org/10.1021/nl5048626

    Article  PubMed  CAS  Google Scholar 

  165. Wang, F., Graetz, J., Moreno, M.S., et al.: Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. ACS Nano 5, 1190–1197 (2011)

    PubMed  CAS  Google Scholar 

  166. Deng, X., Liu, X., Yan, H., et al.: Morphology and modulus evolution of graphite anode in lithium ion battery: an in situ AFM investigation. Sci. China Chem. 57, 178–183 (2013). https://doi.org/10.1007/s11426-013-4988-4

    Article  CAS  Google Scholar 

  167. Jeong, S.K., Inaba, M., Iriyama, Y., et al.: Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions. Electrochim. Acta 47, 1975–1982 (2002)

    CAS  Google Scholar 

  168. Alliata, D., Kötz, R., Novák, P., et al.: Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. Electrochem. Commun. 2, 436–440 (2000)

    CAS  Google Scholar 

  169. Novák, P., Joho, F., Lanz, M., et al.: The complex electrochemistry of graphite electrodes in lithium-ion batteries. J. Power Sources 97, 39–46 (2001)

    Google Scholar 

  170. Edström, K., Herranen, M.: Thermal stability of the HOPG/liquid electrolyte interphase studied by in situ electrochemical atomic force microscopy. J. Electrochem. Soc. 147, 3628–3632 (2000)

    Google Scholar 

  171. Koltypin, M., Cohen, Y.S., Markovsky, B., et al.: The study of lithium insertion–deinsertion processes into composite graphite electrodes by in situ atomic force microscopy (AFM). Electrochem. Commun. 4, 17–23 (2002)

    CAS  Google Scholar 

  172. Liu, X.R., Wang, L., Wan, L.J., et al.: In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. ACS Appl. Mater. Interfaces. 7, 9573–9580 (2015). https://doi.org/10.1021/acsami.5b01024

    Article  PubMed  CAS  Google Scholar 

  173. Mogi, R., Inaba, M., Jeong, S.K., et al.: Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 149, A1578–A1583 (2002)

    CAS  Google Scholar 

  174. Morigaki, K.I.: In situ analysis of the interfacial reactions between MCMB electrode and organic electrolyte solutions. J. Power Sources 103, 253–264 (2002)

    CAS  Google Scholar 

  175. Huang, S., Wang, S., Hu, G., et al.: Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives. Appl. Surf. Sci. 441, 265–271 (2018). https://doi.org/10.1016/j.apsusc.2018.02.014

    Article  CAS  Google Scholar 

  176. Lin, L., Yang, K., Tan, R., et al.: Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated by in situ AFM and ex situ characterizations. J. Mater. Chem. A 5, 19364–19370 (2017). https://doi.org/10.1039/c7ta05469f

    Article  CAS  Google Scholar 

  177. Haruta, M., Kijima, Y., Hioki, R., et al.: Artificial lithium fluoride surface coating on silicon negative electrodes for the inhibition of electrolyte decomposition in lithium-ion batteries: visualization of a solid electrolyte interphase using in situ AFM. Nanoscale 10, 17257–17264 (2018)

    PubMed  CAS  Google Scholar 

  178. Wang, M., Huai, L., Hu, G., et al.: Effect of LiFSI concentrations to form thickness-and modulus-controlled SEI layers on lithium metal anodes. J. Phys. Chem. C 122, 9825–9834 (2018)

    CAS  Google Scholar 

  179. Domi, Y., Ochida, M., Tsubouchi, S., et al.: Electrochemical AFM observation of the HOPG edge plane in ethylene carbonate-based electrolytes containing film-forming additives. J. Electrochem. Soc. 159, A1292–A1297 (2012)

    CAS  Google Scholar 

  180. Tokranov, A., Sheldon, B.W., Li, C., et al.: In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries. ACS Appl. Mater. Inter. 6, 6672–6686 (2014). https://doi.org/10.1021/am500363t

    Article  CAS  Google Scholar 

  181. Li, L., Xu, J., Han, S., et al.: Study on the intrinsic properties of the interface between the cathode and the electrolyte of high voltage LNMO. J. Electrochem. 22, 582–589 (2016)

    CAS  Google Scholar 

  182. Doi, T., Inaba, M., Tsuchiya, H., et al.: Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures. J. Power Sources 180, 539–545 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.054

    Article  CAS  Google Scholar 

  183. Kitta, M., Kohyama, M.: Stability of the LiMn2O4 surface in a LiPF6-based non-aqueous electrolyte studied by in situ atomic force microscopy. Jpn. J. Appl. Phys. 55, 065801 (2016). https://doi.org/10.7567/jjap.55.065801

    Article  Google Scholar 

  184. Lu, W., Zhang, J., Xu, J., et al.: In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling. ACS Appl. Mater. Inter. 9, 19313–19318 (2017)

    CAS  Google Scholar 

  185. Liu, R.R., Deng, X., Liu, X.R., et al.: Facet dependent SEI formation on the LiNi0.5Mn1.5O4 cathode identified by in situ single particle atomic force microscopy. Chem. Commun. 50, 15756–15759 (2014)

    CAS  Google Scholar 

  186. Quinlan, F.T., Sano, K., Willey, T., et al.: Surface characterization of the spinel LixMn2O4 cathode before and after storage at elevated temperatures. Chem. Mater. 13, 4207–4212 (2001)

    CAS  Google Scholar 

  187. Clemencon, A., Appapillai, A., Kumar, S., et al.: Atomic force microscopy studies of surface and dimensional changes in LixCoO2 crystals during lithium de-intercalation. Electrochim. Acta 52, 4572–4580 (2007)

    CAS  Google Scholar 

  188. Verde, M.G., Baggetto, L., Balke, N., et al.: Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale. ACS Nano 10, 4312–4321 (2016)

    PubMed  CAS  Google Scholar 

  189. Luo, W., Lin, C.F., Zhao, O., et al.: Ultrathin surface coating enables the stable sodium metal anode. Adv. Energy Mater. 7, 1601526 (2017). https://doi.org/10.1002/aenm.201601526

    Article  CAS  Google Scholar 

  190. LaCourse, W.R., Dasenbrock, C.O.: Column liquid chromatography: equipment and instrumentation. Anal. Chem. 70, 37–52 (1998)

    Google Scholar 

  191. Aurbach, D.: The electrochemical behavior of lithium salt solutions of γ-butyrolactone with noble metal electrodes. J. Electrochem. Soc. 136, 906–913 (1989)

    CAS  Google Scholar 

  192. Aurbach, D.: Electrode–solution interactions in Li-ion batteries: a short summary and new insights. J. Power Sources 119–121, 497–503 (2003). https://doi.org/10.1016/s0378-7753(03)00273-8

    Article  Google Scholar 

  193. Cheng, H., Zhu, C., Lu, M., et al.: In situ micro-FTIR study of the solid–solid interface between lithium electrode and polymer electrolytes. J. Power Sources 174, 1027–1031 (2007)

    CAS  Google Scholar 

  194. Parry, D.B., Samant, M.G., Seki, H., et al.: In situ Fourier transform infrared spectroelectrochemical study of bisulfate and sulfate adsorption on gold, with and without the underpotential deposition of copper. Langmuir 9, 1878–1887 (1993)

    CAS  Google Scholar 

  195. Korepp, C., Santner, H., Fujii, T., et al.: 2-Cyanofuran—a novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries. J. Power Sources 158, 578–582 (2006)

    CAS  Google Scholar 

  196. Santner, H., Korepp, C., Winter, M., et al.: In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries. Anal. Bioanal. Chem. 379, 266–271 (2004)

    PubMed  CAS  Google Scholar 

  197. Morigaki, K.I., Ohta, A.: Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy. J. Power Sources 76, 159–166 (1998)

    CAS  Google Scholar 

  198. Pyun, S.I., Ryu, Y.G.: In-situ spectroelectrochemical analysis of the passivating surface film formed on a graphite electrode during the electrochemical reduction of lithium salts and organic carbonate solvent. J. Electroanal. Chem. 455, 11–17 (1998)

    CAS  Google Scholar 

  199. Winter, M., Imhof, R., Joho, F., et al.: FTIR and DEMS investigations on the electroreduction of chloroethylene carbonate-based electrolyte solutions for lithium-ion cells. J. Power Sources 81, 818–823 (1999)

    Google Scholar 

  200. Lanz, P., Novák, P.: Combined in situ Raman and IR microscopy at the interface of a single graphite particle with ethylene carbonate/dimethyl carbonate. J. Electrochem. Soc. 161, A1555–A1563 (2014)

    CAS  Google Scholar 

  201. Hongyou, K., Hattori, T., Nagai, Y., et al.: Dynamic in situ fourier transform infrared measurements of chemical bonds of electrolyte solvents during the initial charging process in a Li ion battery. J. Power Sources 243, 72–77 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.192

    Article  CAS  Google Scholar 

  202. Reiter, J., Vondrák, J., Michálek, J., et al.: Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents. Electrochim. Acta 52, 1398–1408 (2006). https://doi.org/10.1016/j.electacta.2006.07.043

    Article  CAS  Google Scholar 

  203. Yang, J., Solomatin, N., Kraytsberg, A., et al.: In-situ spectro-electrochemical insight revealing distinctive silicon anode solid electrolyte interphase formation in a lithium-ion battery. ChemistrySelect 1, 572–576 (2016)

    CAS  Google Scholar 

  204. Matsui, M., Dokko, K., Kanamura, K.: Dynamic behavior of surface film on LiCoO2 thin film electrode. J. Power Sources 177, 184–193 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.078

    Article  CAS  Google Scholar 

  205. Matsui, M., Dokko, K., Kanamura, K.: Surface layer formation and stripping process on LiMn2O4 and LiNi1/2Mn3/2O4 thin film electrodes. J. Electrochem. Soc. 157, A121–A129 (2010)

    CAS  Google Scholar 

  206. Matsui, M., Dokko, K., Akita, Y., et al.: Surface layer formation of LiCoO2 thin film electrodes in non-aqueous electrolyte containing lithium bis (oxalate) borate. J. Power Sources 210, 60–66 (2012)

    CAS  Google Scholar 

  207. Matsushita, T., Dokko, K., Kanamura, K.: In situ FT-IR measurement for electrochemical oxidation of electrolyte with ethylene carbonate and diethyl carbonate on cathode active material used in rechargeable lithium batteries. J. Power Sources 146, 360–364 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.011

    Article  CAS  Google Scholar 

  208. Ratner, B.D., Castner, D.G.: Electron Spectroscopy for Chemical Analysis. Surface Analysis: the Principal Techniques. Wiley, Hoboken (2009)

    Google Scholar 

  209. Song, H., Zheng, C., Zhang, Z., et al.: Effect of vinylene carbonate as electrolyte additive on cycling performance of LiFePO4/graphite cell at elevated temperature. T. Nonferr. Metal. Soc. 24, 723–728 (2014)

    CAS  Google Scholar 

  210. Maibach, J., Xu, C., Eriksson, S.K., et al.: A high pressure X-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system. Rev. Sci. Instrum. 86, 044101 (2015)

    PubMed  Google Scholar 

  211. Tang, C.Y., Haasch, R.T., Dillon, S.J.: In situ X-ray photoelectron and Auger electron spectroscopic characterization of reaction mechanisms during Li-ion cycling. Chem. Commun. 52, 13257–13260 (2016). https://doi.org/10.1039/c6cc08176b

    Article  CAS  Google Scholar 

  212. Wenzel, S., Randau, S., Leichtweiß, T., et al.: Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016)

    CAS  Google Scholar 

  213. Benninghoven, A.: Die analyse monomolekularer Festkörperoberflächenschichten mit Hilfe der Sekundärionenemission. Zeitschrift für Physik A Hadrons and Nuclei 230, 403–417 (1970)

    CAS  Google Scholar 

  214. McPhail, D.: Applications of secondary ion mass spectrometry (SIMS) in materials science. J. Mater. Sci. 41, 873–903 (2006)

    CAS  Google Scholar 

  215. Van Vaeck, L., Adriaens, A., Gijbels, R.: Static secondary ion mass spectrometry (S-SIMS) Part 1: methodology and structural interpretation. Mass Spectrom. Rev. 18, 1–47 (1999)

    Google Scholar 

  216. Peled, E., Tow, D.B., Merson, A., et al.: Microphase structure of SEI on HOPG. J. New Mater. Electrochem. Syst. 3, 319–326 (2000)

    CAS  Google Scholar 

  217. Pereira-Nabais, C., Światowska, J., Chagnes, A., et al.: Interphase chemistry of Si electrodes used as anodes in Li-ion batteries. Appl. Surf. Sci. 266, 5–16 (2013). https://doi.org/10.1016/j.apsusc.2012.10.165

    Article  CAS  Google Scholar 

  218. Zenhausern, F., O’boyle, M., Wickramasinghe, H.: Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623–1625 (1994)

    CAS  Google Scholar 

  219. Muller, E.A., Pollard, B., Raschke, M.B.: Infrared chemical nano-imaging: accessing structure, coupling, and dynamics on molecular length scales. J. Phys. Chem. Lett. 6, 1275–1284 (2015)

    PubMed  CAS  Google Scholar 

  220. Centrone, A.: Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem. 8, 101–126 (2015)

    CAS  Google Scholar 

  221. Lahiri, B., Holland, G., Centrone, A.: Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Small 9, 439–445 (2013)

    PubMed  CAS  Google Scholar 

  222. Dazzi, A., Prazeres, R., Glotin, F., et al.: Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388–2390 (2005)

    PubMed  CAS  Google Scholar 

  223. Dazzi, A., Prater, C.B.: AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2016)

    PubMed  Google Scholar 

  224. Liu, J., Park, S., Nowak, D., et al.: Near-Field characterization of graphene plasmons by photo-induced force microscopy. Laser Photonics Rev. 12, 1800040 (2018)

    Google Scholar 

  225. Almajhadi, M., Wickramasinghe, H.K.: Contrast and imaging performance in photo induced force microscopy. Opt. Express 25, 26923–26938 (2017)

    PubMed  CAS  Google Scholar 

  226. Jahng, J., Ladani, F.T., Khan, R.M., et al.: Complex Light and Optical Forces X. 97641 J. International Society for Optics and Photonics, Bellingham (2016)

    Google Scholar 

  227. Wang, X., Li, Y., Meng, Y.S.: Cryogenic electron microscopy for characterizing and diagnosing batteries. Joule 2, 2225–2234 (2018)

    CAS  Google Scholar 

  228. Chen, Y., Zheng, L., Johnson, D.C., et al.: Reaction: potential impact of cryo-EM technique on battery industry. Chem 4, 2254–2256 (2018). https://doi.org/10.1016/j.chempr.2018.09.019

    Article  CAS  Google Scholar 

  229. Wang, Y.: Cryo-electron microscopy finds place in materials science. Sci. China Mater. 61, 129–130 (2017). https://doi.org/10.1007/s40843-017-9159-1

    Article  Google Scholar 

  230. Yuan, Y., Lu, J.: Reaction: freezing electrochemical interfaces for robustness in electron microscopy. Chem 4, 2253–2254 (2018). https://doi.org/10.1016/j.chempr.2018.09.010

    Article  CAS  Google Scholar 

  231. Li, Y., Li, Y., Cui, Y.: Catalyst: how cryo-EM shapes the development of next-generation batteries. Chem 4, 2250–2252 (2018). https://doi.org/10.1016/j.chempr.2018.09.007

    Article  CAS  Google Scholar 

  232. Weadock, N., Varongchayakul, N., Wan, J., et al.: Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy. Nano Energy 2, 713–719 (2013). https://doi.org/10.1016/j.nanoen.2013.08.005

    Article  CAS  Google Scholar 

  233. McAllister, Q.P., Strawhecker, K.E., Becker, C.R., et al.: In situ atomic force microscopy nanoindentation of lithiated silicon nanopillars for lithium ion batteries. J. Power Sources 257, 380–387 (2014)

    CAS  Google Scholar 

  234. Lacey, S.D., Wan, J., Cresce, A.V.W., et al.: Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett. 15, 1018–1024 (2015)

    PubMed  CAS  Google Scholar 

  235. Liu, X., Wang, D., Wan, L.: Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy. Sci. Bull. 60, 839–849 (2015). https://doi.org/10.1007/s11434-015-0763-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant nos. 21625304 and 21733012), the “Strategic Priority Research Program” of CAS (Grant no. XDA09010600) and the Ministry of Science and Technology (Grant No. 2016YFA0200703).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbin Shen or Liwei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Y., Shen, Y., Guo, F. et al. Advanced Characterizations of Solid Electrolyte Interphases in Lithium-Ion Batteries. Electrochem. Energ. Rev. 3, 187–219 (2020). https://doi.org/10.1007/s41918-019-00058-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00058-y

Keywords

Navigation